Big Data: как применять и анализировать большие данные?
Сегодня, одним из самых популярных и инновационных направлений в IT является применение Big Data. Именно огромные массивы информации, которые, как правило, неупорядочены, и технологии по работе с ними - это термины, которые обозначают этот тренд. Открытие новых возможностей для бизнеса - главное преимущество использования Big Data. Такие компании могут предоставлять своим клиентам персонифицированные продукты и сервисы. В этом материале мы расскажем об основных технологиях анализа больших массивов данных и о том, какие пользы они могут принести.
Приблизительно с 2010 года стало понятно, что аналитика большого объема данных имеет очень широкое применение в разных отраслях. Развитие информационных технологий и вычислительных мощностей позволило обработку колоссальных объемов данных. Огромные массивы информации поступают из самых разных источников: социальные сети, интернет-магазины, форумы, мобильные устройства, измерительные приборы, метеостанции, аудио- и видеорегистраторы и другие. Эти данные растут экспоненциально, а традиционные методы и инструменты уже не могут справиться с их обработкой.
Понятие Big Data возникло в 2008 году, когда был выпущен специальный номер журнала Nature, посвященный влиянию огромных массивов информации в развитии науки. Для обработки всех этих данных нужны специальные алгоритмы и программные средства, также входящие в понятие Big Data.
Анализ методов хранения данных
В современном мире большие объемы данных являются незаменимыми ресурсами, однако их использование может оказаться неэффективным, если они не будут обработаны и соответственно использованы. Для обработки больших данных используются методы, которые состоят из нескольких этапов. Первым шагом является сбор информации из различных источников, включая серверы, базы данных и другие устройства. Далее следует обеспечить их хранение, обработку и защиту от потери.
В настоящее время для хранения данных используются как собственные вычислительные ресурсы, так и облачные решения. Тем не менее, использование собственных ресурсов может привести к проблеме масштабирования, а также к дополнительным расходам на поддержание и обновление оборудования. При этом, в периоды пиковых нагрузок, физический сервер может выйти из строя, при этом перестраховка приводит к неоправданным расходам.
Использование облачных решений для хранения данных позволяет избежать данных проблем и обеспечивает быстрое масштабирование и резервирование вычислительных ресурсов. В облачных решениях есть возможность быстро увеличить объем информации, а также обеспечить надежность, отказоустойчивость и гибкую настройку. Таким образом, каждый индивидуальный подход должен быть оценен в соответствии со спецификой бизнес-задач, требующих обработки данных.
Один из основных и заключительных этапов работы с большими данными - это их анализ. Именно благодаря этому этапу Big Data начинает приносить реальную практическую пользу. Анализ позволяет отфильтровать все ненужное и выделить самую важную информацию, которая может быть полезна для бизнеса.
Методы анализа больших данных очень разнообразны, и их описание не входит в рамки одной статьи. Однако, мы можем рассказать об основных методах.
Переработка информации перед анализом
Процесс приведения неоднородных данных к унифицированному виду, заполнения пропущенных значений и удаления избыточной информации. Этап переработки информации перед анализом Big Data, который необходим для правильной подготовки данных к дальнейшему исследованию.
Data Mining: извлечение полезной информации из разнородного массива
Data Mining - это метод, который позволяет извлекать полезные закономерности из различных источников информации. Суть метода заключается в том, что он позволяет выявить связи и зависимости, которые не видны на первый взгляд.
В рамках этого метода решаются задачи по классификации, кластеризации и анализу отклонений. Классификация позволяет определить принадлежность объекта к определенному классу, кластеризация - объединение объектов в группы в зависимости от степени их сходства, а анализ отклонений помогает выявлять аномалии и выбросы.
Таким образом, Data Mining является эффективным методом для извлечения полезной информации из различных источников и может применяться в различных областях, где необходимо обрабатывать большие объёмы данных.
Алгоритмы машинного обучения похожи на работу человеческого мозга, ведь они производят анализ входных данных и дают необходимые результаты. Нейронные сети особенно умелы в этом, проделывая сложную работу. Они могут обнаруживать лица на фотографиях или определять недобросовестные транзакции по различным признакам.
В современном мире прогностический анализ используется для предсказания различных событий: от поведения клиентов и увеличения продаж до изменения финансовых показателей компании, курсов валют, доставки товаров и поломок оборудования. Одним из ключевых моментов в прогнозировании будущих событий является использование ретроспективных данных и выделение параметров, которые могут значительно влиять на результат. Таким образом, прогностический анализ становится незаменимым инструментом для различных индустрий, что позволяет им оперативно адаптироваться к изменяющимся условиям и принимать управленческие решения на основе научных данных.
Статистический анализ
Большие объемы данных (Big Data) помогают улучшить точность статистического анализа: чем более представительной будет выборка, тем более точными будут результаты исследований.
Визуализация является ключевым этапом в анализе данных, так как она позволяет представить информацию в удобном и понятном формате для пользователя. Этот процесс может включать в себя создание графиков, карт, схем, диаграмм и гистограмм.
Для достижения успешного результата визуализации используются специальные инструменты Big Data, которые позволяют обрабатывать и анализировать большие объемы данных.
Количество информации, сгенерированной пользователями, увеличивается с каждым годом. Примерно за 2020 год они сгенерировали почти 60 зеттабайт (около 60 × 10 21 байт) данных, а к 2025 году прогнозируется утроение этих цифр. Поэтому анализ Big Data является перспективным технологическим направлением, на которое вкладываются большие деньги крупных компаний. Большие данные актуальны и для бизнеса, и для науки, и для сферы государственного управления.
Какими характеристиками обладает Big Data?
Данные называются большими, если они отвечают трем основным характеристикам, которые обозначены «трем V»:
1. Объем (Volume). Эта характеристика связана с масштабом. Данные должны представлять собой огромные потоки информации, которые измеряются даже не в терабайтах, а в петабайтах и эксабайтах.
2. Скорость (Velocity). Это означает, что данные приходят из разных источников непрерывно и очень быстро.
3. Разнообразие (Variety). Big Data - это информация разных типов: текстовые и графические документы, аудио- и видеофайлы, логи. Она может быть совсем не упорядоченной или упорядоченной частично.
С ростом популярности Big Data в последние годы к «трем V» добавились еще две характеристики - достоверность (Veracity) и ценность (Value). Это значит, что данные должны быть точными и приносить пользу бизнесу. Иногда также выделяют еще одну характеристику - жизнеспособность (Viability).
Каковы плюсы использования Big Data?
Применение технологии анализа больших данных дает возможность оптимизировать бизнес-процессы, повысить производительность, улучшить качество товаров и услуг, минимизировать риски, предвидеть тенденции рынка, а также получить глубокое понимание поведения клиентов, их потребностей и интересов для более точного попадания в целевую аудиторию. К примеру, большим сферам применения Технологии Big Data были телекоммуникационные компании, банковская и розничная отрасли. Применение Big Data позволяет повысить экологические характеристики и энергоэффективность в производстве. Для продавцов это выгодно, а для покупателей - удобно.
В настоящее время технологии хранения и анализа больших данных практически неизбежны и востребованы не только в торговле, рекламе и индустрии развлечений, но и в различных сферах деятельности, включая безопасность, медицину, сельское хозяйство, промышленность, энергетику, науку и государственное управление.
Рассмотрим несколько примеров практического применения больших данных, которые имеют актуальность в разных отраслях деятельности.
Внедрение инноваций в сфере медицины значительно расширяет возможности науки и технологий, в том числе при помощи анализа Big Data. Некоторые технологические компании уже создали интеллектуальные продукты и сервисы, с помощью которых можно решать принципиально новые задачи в медицине. Например, в Америке была разработана платформа «вычислительной биологии» для установления взаимодействия химических веществ с сигнальными рецепторами клеток организма. При использовании инструментов Big Data возможна революция в фармакологии, поскольку с ее помощью можно находить и создавать лекарственные препараты, которые точно попадают в цель и могут эффективно лечить различные заболевания.
Сегодня анализ больших данных используется для ускорения и повышения точности медицинских исследований. На конференции программистов DUMP уральского региона были представлены данные, демонстрирующие, что использование Big Data в циклических медицинских тестированиях выявляет ошибки с точностью более чем на 20%, по сравнению с неавтоматизированными измерениями.
В Европе технология анализа больших данных внедряется в сферу медицины более широкими возможностями. Здесь проведено исследование, в ходе которого была проанализирована информация на 150 000 пациентов, что позволило выявить связь определенных генетических факторов с риском возникновения рака. Такой анализ выполнен благодаря использованию технологий Big Data.
Изучение поведения клиентов
В настоящее время маркетологи активно используют большие данные для оптимизации эффективности рекламной кампании. Данные анализируются из истории покупок, поиска, посещений и лайков в социальных сетях для определения предпочтений пользователей. Это позволяет предлагать клиентам только самые подходящие предложения, сделав рекламу более адресной и эффективной, благодаря Big Data.
Одним из первооткрывателей в этой области стал известный маркетплейс Amazon. В системе рекомендаций учитывались не только история покупок и анализ поведения клиентов, но и внешние факторы, такие как сезон и предстоящие праздники. В результате система рекомендаций Amazon стала ответственной за более чем треть всех продаж.
Статья рассказывает о том, как банки используют большие данные для обеспечения безопасности транзакций и предотвращения мошенничества. Специалисты используют Big Data и машинное обучение, чтобы разработать модели поведения добросовестных пользователей. Таким образом, любое отклонение от нормального поведения вызывает сигнал тревоги для службы безопасности.
Один из ярких примеров – это Сбербанк. Система сравнения фотографий клиентов, полученных с помощью веб-камеры, с изображениями из базы, была внедрена еще в 2014 году. Благодаря этой системе точность идентификации была улучшена, а случаи мошенничества уменьшились в десять раз.
Таким образом, инструменты, основанные на Big Data и машинном обучении, позволяют банкам повысить уровень безопасности транзакций и защитить персональные данные клиентов от мошенников.
Улучшение производственных процессов с использованием Big Data
Сегодняшние производственные процессы все больше и больше опираются на сбор и анализ больших данных. Одна из главных задач таких систем - предотвращение простоев и уменьшение времени, затрачиваемого на производство. Для этого интеллектуальные системы отслеживают состояние оборудования и производят анализ данных, полученных от приборов мониторинга, средств измерения и логических контроллеров. Такой подход позволяет предотвратить поломки, выявить и исключить из производственного процесса неэффективные операции, а также снизить расходы на материалы и потребление энергии. Об этом сообщает сайт Controleng.ru.
Одним из примеров успешной реализации проектов в области сбора и анализа больших данных стало внедрение интеллектуальной платформы в аэропорту «Пулково» в 2020 году. Эта платформа управляет работой семидесяти служб компании и автоматизирует процессы, что делает управление аэропортом более прозрачным и эффективным. Оперативное получение полной информации по текущим процессам повышает качество работы предприятия. Внедрение интеллектуальной платформы также упрощает сотрудничество аэропорта с авиакомпаниями, помогает оптимизировать планирование ресурсов, в том числе техническое обслуживание и ремонт терминалов. Согласно прогнозам экспертов, изменения приведут к улучшению технического состояния оборудования на 10% и повышению скорости обращения запасов, а уровень сервиса по поставкам увеличится на 20%. Сайт АНО «Радиочастотный спектр» сообщает об этом.
Большие данные – это мощный инструмент, который позволяет строить модели, выявлять закономерности и прогнозировать изменения в поведении людей и процессов. Одной из областей, в которых применяется прогнозная аналитика на основе Big Data, является реклама. Она помогает планировать успешные маркетинговые кампании, предугадывая потребительский спрос на товары и услуги и совершенствуя взаимодействие с клиентами.
Прогнозные модели на основе больших данных также нашли применение в различных областях, включая образование. Так, их используют для расчета будущей успеваемости учеников и эффективности программ.
Кроме того, прогнозная аналитика на основе Big Data уже широко применяется в авиации. Например, в компании Airbus рассчитывают, что к 2025 году, благодаря предиктивному обслуживанию, удастся снизить количество отказов самолетов из-за выявленных неисправностей. Компания Lufthansa Technik уже внедрила платформу, которая прогнозирует сроки замены деталей. Операции, проводимые на основе прогнозной аналитики на основе больших данных, помогают совершенствовать различные отрасли, делая их более эффективными и конкурентоспособными.
Небольшая статистика
Консалтинговая компания Accenture провела исследование в 2014 году, опросив руководителей 1000 компаний из разных стран мира. Было обнаружено, что 60% из них уже внедрили системы анализа больших данных и были довольны результатами. Участники опроса отметили создание новых продуктов и услуг, увеличение количества способов заработка, улучшение клиентского опыта, а также повышение лояльности клиентов среди основных преимуществ Big Data. Источник: https://www.tadviser.ru/.
Фото: freepik.com